Left Nb. | Right Nb. | Frequency |
---|---|---|
i | det | 88 |
i | en | 150 |
og | at | 71 |
og | det | 142 |
er | at | 86 |
er | en | 139 |
er | det | 294 |
på | det | 48 |
på | å | 79 |
på | at | 84 |
på | en | 110 |
til | en | 78 |
til | at | 107 |
til | å | 456 |
det | som | 55 |
det | er | 318 |
som | en | 61 |
som | er | 150 |
at | en | 47 |
at | det | 246 |
NN co-occurrences within the 10 most frequent words are presented in a table.
The graph below gives much more information. Here, the top-1000 words are plotted against each other and the dots indicate NN co-occurrences. The diameter of the dots increases with the significance of the co-occurrence. Both axis are scaled logarithmic to shift the emphasis to the top words.
The picture above is very typical for a language, therefore the name language fingerprint. Comparing these fingerprints for different languages one is able to identify determiners, prepositions etc. by its graphical properties.
Frequency of the most frequent word:
select @maxfreq:=(select freq from words where w_id=101);
Table data:
select w1.word,w2.word,c.freq from co_n c, words w1, words w2 where w1.w_id=w1_id and w2.w_id=w2_id and w1_id>100 and w2_id>100 and 110>=w1_id and 110>=w2_id and c.freq>(select count(*) from sentences)/100000 order by w1.w_id;
Picture data:
select if(12>w1_id-99,w1.word,"-"),if(12>w2_id-99,w2.word,"-"),w1_id-99,w2_id-99,1/(log(c.freq/@maxfreq)*log(c.freq/@maxfreq)/20) from co_n c, words w1, words w2 where w1.w_id=w1_id and w2.w_id=w2_id and w1_id>100 and w2_id>100 and 1100>=w1_id and 1100>=w2_id and c.freq>(select count(*) from sentences)/100000;